On Φ-symmetric Lp-sasakian Manifolds Admitting Semi-symmetric Metric Connection
نویسندگان
چکیده
The object of the present paper is to study locally φsymmetric LP-Sasakian manifolds admitting semi-symmetric metric connection and obtain a necessary and sufficient condition for a locally φsymmetric LP-Sasakian manifold with respect to semi-symmetric metric connection to be locally φ-symmetric LP-Sasakian manifold with respect to Levi-Civita connection. AMS Mathematics Subject Classification (2010): 53B05, 53C25
منابع مشابه
Conservative Projective Curvature Tensor On Trans-sasakian Manifolds With Respect To Semi-symmetric Metric Connection
We obtain results on the vanishing of divergence of Riemannian and Projective curvature tensors with respect to semi-symmetric metric connection on a trans-Sasakian manifold under the condition φ(gradα) = (n− 2)gradβ.
متن کاملOn pseudo cyclic Ricci symmetric manifolds admitting semi-symmetric metric connection
The object of the present paper is to investigate the applications of pseudo cyclic Ricci symmetric manifolds admitting a semi-symmetric metric connection to the general relativity and cosmology.
متن کاملProjective φ-symmetric K-contact manifold admitting quarter-symmetric metric connection
We obtain curvature tensor R̃(X, Y )Z w.r.t quarter-symmetric metric connection in terms of curvature tensor R(X,Y )Z relative to the Levi-civita connection in a K-contact manifold. Further, locally φ-symmetric, φ-symmetric and locally projective φ-symmetric K-contact manifolds with respect to the quarter-symmetric metric connection are studied and some results are obtained. The results are assi...
متن کاملInequalities on the Ricci curvature
We improve Chen-Ricci inequalities for a Lagrangian submanifold Mn of dimension n (n 2) in a 2n -dimensional complex space form M̃2n(4c) of constant holomorphic sectional curvature 4c with a semi-symmetric metric connection and a Legendrian submanifold Mn in a Sasakian space form M̃2n+1(c) of constant φ -sectional curvature c with a semi-symmetric metric connection, respectively.
متن کاملAlmost Contact Metric Manifolds Admitting Semi-symmetric Non-metric Connection (communicated by Uday Chand De)
In this paper, we study some geometrical properties of almost contact metric manifolds equipped with semi-symmetric non-metric connection. In the last, properties of group manifold are given.
متن کامل